Скоринг представляет собой математическую или статистическую модель, с помощью которой на основе кредитной истории «прошлых» клиентов банк пытается определить, насколько велика вероятность, что конкретный потенциальный заемщик вернет кредит в срок.
Кредитные аналитики оперируют следующими понятиями: «характеристики» клиентов (в математической терминологии — переменные, факторы) и «признаки» — значения, которые принимает переменная. Если представить себе анкету, которую заполняет клиент, то характеристиками являются вопросы анкеты (возраст, семейное положение, профессия), а признаками — ответы на эти вопросы.
В западной банковской системе, когда человек обращается за кредитом, банк может располагать следующей информацией для анализа:
В самом упрощенном виде скоринговая модель представляет собой взвешенную сумму определенных характеристик. В результате получается интегральный показатель (score); чем он выше, тем выше надежность клиента, и банк может упорядочить своих клиентов по степени возрастания кредитоспособности.
Интегральный показатель каждого клиента сравнивается с неким числовым порогом, или линией раздела, которая, по существу, является линией безубыточности и рассчитывается из отношения, сколько в среднем нужно клиентов, которые платят в срок, для того, чтобы компенсировать убытки от одного должника. Клиентам с интегральным показателем выше этой линии выдается кредит, клиентам с интегральным показателем ниже этой линии — нет.
Все это выглядит очень просто, однако сложность заключается в определении, какие характеристики следует включать в модель и какие весовые коэффициенты должны им соответствовать. К этой проблеме имеется несколько подходов, которые будут рассмотрены в разделе «Методы классификации клиентов».
Философия скоринга заключается не в поиске объяснений, почему этот человек не платит. Скоринг выделяет те характеристики, которые наиболее тесно связаны с ненадежностью или, наоборот, с надежностью клиента. Мы не знаем, вернет ли данный заемщик кредит, но мы знаем, что в прошлом люди этого возраста, этой же профессии, с таким же уровнем образования и с таким же числом иждивенцев кредит не возвращали. Поэтому мы давать кредит этому человеку не будем.
В этом заключается дискриминационный (не в статистическом, а в социальном значении этого слова) характер скоринга, т. е. если человек по формальным признакам близок к группе с плохой кредитной историей, то ему кредит не дадут. Поэтому даже при очень высокой степени использования автоматизированных систем скоринга осуществляется субъективное вмешательство в случае, когда кредитный инспектор располагает дополнительной информацией, доказывающей, что человек, классифицированный как ненадежный, на самом деле «хороший», и наоборот.
Какие же характеристики являются наиболее «ценными» для прогнозирования кредитного риска? В Великобритании наиболее часто используются следующие характеристики:
В других странах набор характеристик, которые наиболее тесно связаны с вероятностью дефолта — вероятностью, что заемщик не вернет кредит или задержится с выплатой, будет отличаться в силу национальных экономических и социально-культурных особенностей. Чем более однородна популяция клиентов, на которой разрабатывается модель, тем точнее прогнозирование дефолта. Поэтому очевидно, что нельзя автоматически перенести модель из одной страны в другую или из одного банка в другой. Даже внутри одного банка существуют различные модели для различных групп клиентов и различных видов кредита.
История развития скоринга
Скоринг, по существу, является методом классификации всей интересующей нас популяции на различные группы, когда нам неизвестна характеристика, которая разделяет эти группы (вернет клиент кредит или нет), на зато известны другие характеристики, связанные с интересующей нас. В статистике идеи классификации популяции на группы были разработаны Фишером в 1936 г. на примере растений. В 1941 г. Дэвид Дюран впервые применил данную методику к классификации кредитов на «плохие» и «хорошие». По времени это совпало со Второй мировой войной, когда почти все кредитные аналитики были призваны на фронт, и банки столкнулись с необходимостью срочной замены этих специалистов. Банки заставили своих аналитиков перед уходом написать свод правил, которыми следовало руководствоваться при принятии решения о выдаче кредита, чтобы анализ мог проводиться неспециалистами. Это и был как бы прообраз будущих экспертных систем.
В начале 50-х гг. в Сан-Франциско образовалась первая консалтинговая фирма в области скоринга — Fair Issac, которая до сих пор является лидером среди разработчиков скоринговых систем.
Но широкое применение скоринга началось с распространением кредитных карточек. При том количестве людей, которые ежедневно обращались за кредитными карточками, банкам ничего другого не оставалось, как автоматизировать процесс принятия решений по выдаче кредита. Однако очень скоро они оценили не только быстроту обработки заявлений на выдачу кредита, но и качество оценки риска. По данным некоторых исследований, после внедрения скоринг-систем уровень безнадежного долга сокращался до 50% (Churchill G. A., Nevin J. R., Watson R. R.//The role of credit scoring in the loan decision. Credit World. March/1977; Myers J. H., Forgy E. W. The development of numerical credit evaluation systems//Journal of American Statistical Association. September/1963).
В 1974 г. в США был принят Закон о предоставлении равных возможностей на получение кредита, который запрещал отказывать в выдаче кредита на основании следующих характеристик: раса, цвет кожи, национальное происхождение, возраст, пол, семейное положение, религия, получение социальных пособий, отстаивание прав потребителей. В Великобритании законодательство допускает использование информации о возрасте и семейном положении, но зато запрещает принимать во внимание какие-либо физические увечья и недостатки (инвалидность). Для кредитных организаций использование скоринговых систем стало доказательством исполнения этих антидискриминационных законов — у компьютера нет предубеждений.
Помимо установления принципов равноправия в области кредитования, кредитное законодательство США, как и Закон о потребительском кредите, принятый в Великобритании в том же 1974 г., имели важное значение для формирования службы кредитных бюро. В таких бюро записывается кредитная история всех людей, когда-либо обращавшихся за ссудой в любую кредитную организацию страны.
В кредитных бюро содержатся следующие виды данных:
Объем и характер информации, хранящейся в бюро, строго регулируется законодательством каждой страны. В «Банковских технологиях» уже была публикация о кредитных бюро в сентябре 1999 г. — «Вопросы учреждения кредитного бюро в России». Хотелось бы добавить, что помимо рассмотренных в статье моделей бюро существуют и транснациональные коммерческие компании, такие как Experian, Equifax, TransUnion, Scorex. Эти компании сами используют скоринговые системы, и во многих случаях продают клиентам не «сырую» информацию, а уже готовый интегральный показатель, который вводится в автоматизированную систему кредитной организации.
Значение кредитных бюро чрезвычайно велико, их существование позволяет кредитным организациям выдавать ссуды клиентам, которые ранее в этой организации не обслуживались. Кроме того, общепризнанной является ценность предыдущей кредитной истории для прогнозирования вероятности дефолта.
В настоящее время скоринг становится все более популярным не только при оценке риска при различных видах кредита, но и в других областях: в маркетинге (для определения вероятности, что именно эта группа клиентов будет пользоваться этим видом продукции), при работе с должниками (если клиент задерживается с очередным платежом, какой метод воздействия будет наиболее эффективным), при выявлении мошенничества с кредитными карточками, при определении вероятности, что клиент может перебежать к конкуренту и т. п.
Методы классификации клиентов
Итак, в нашем распоряжении имеется большой объем разнообразной информации о клиентах. В этом океане сведений даже кредитному инспектору со значительным опытом работы иногда сложно сориентироваться при ответе, скажем, на вопрос — какой клиент представляет больший риск: разведенный бездетный мужчина-предприниматель или замужняя женщина-адвокат с тремя детьми, при том что уровень дохода у них одинаков? Чтобы иметь возможность сравнивать клиентов с совершенно разными признаками и принимать решения о кредитовании не интуитивно, а на основе формализованных критериев, непосредственно связанных с вероятностью дефолта, необходимо построить математическую модель, которая позволит оценить, какая информация является существенной, а какой можно пренебречь.
В целях построения модели сначала производится выборка клиентов кредитной организации, о которых уже известно, хорошими заемщиками они себя зарекомендовали или нет, иногда такая выборка называется «обучающей». Она может варьироваться от нескольких тысяч до сотни тысяч, что не является проблемой на Западе, где кредитный портфель компаний может состоять из десятков миллионов клиентов. Выборка подразделяется на две группы: «хорошие» и «плохие» риски. Это оправдано в том смысле, что банк при принятии решения о кредитовании на первом этапе выбирает из двух вариантов: давать кредит или не давать. При всей «детскости» определений «хороший»/«плохой», это именно те термины, которые используются кредитными аналитиками.
Определение «плохого» риска может быть разным в зависимости от политики банка, в Западной Европе «плохим» риском обычно считается клиент, задерживающийся с очередной выплатой на три месяца. Иногда к «плохим» рискам относятся клиенты, которые слишком рано возвращают кредит, и банк не успевает ничего на них заработать.
Таким образом, скоринг представляет собой классификационную задачу, где исходя из имеющейся информации необходимо получить функцию, наиболее точно разделяющее выборку клиентов на «плохих» и «хороших».
Но предварительно необходимо преобразовать имеющуюся информацию в форму, поддающуюся анализу. Существует два основных подхода, которые пригодны для работы как с количественными, так и с качественными характеристиками:
Методы собственно классификации весьма разнообразны и включают в себя:
Традиционными и наиболее распространенными являются регрессионные методы, прежде всего линейная многофакторная регрессия :
р = wo + w1x1 + w2x2 + … + wnxn ,
где р — вероятность дефолта, w — весовые коэффициенты, x — характеристики клиента.
Недостаток данной модели заключается в том, что в левой части уравнения находится вероятность, которая принимает значения от 0 до 1, а переменные в правой части могут принимать любые значения от - до + .
Логистическая регрессия позволяет преодолеть этот недостаток:
log (p/(1-p)) = wo + w1x1 + w2x2 + … + wnxn.
Для применения логистической регрессии необходимы гораздо более сложные расчеты для получения весовых коэффициентов и, следовательно, более мощная компьютерная база и усовершенствованное компьютерное обеспечение. Но при современном уровне развития компьютерной техники это не является проблемой, и в настоящее время логистическая регрессия является лидером скоринговых систем.
Преимущество логистической регрессии еще и в том, что она может подразделять клиентов как на две группы (0 — плохой, 1 — хороший), так и на несколько групп (1, 2, 3, 4 группы риска).
Все регрессионные методы чувствительны к корреляции между характеристиками, поэтому в модели не должно быть сильно коррелированных независимых переменных.
Линейное программирование также приводит к линейной скоринговой модели. Провести абсолютно точную классификацию на плохих и хороших клиентов невозможно, но желательно свести ошибку к минимуму. Задачу можно сформулировать как поиск весовых коэффициентов, для которых ошибка и будет минимальной.
Дерево классификации и нейронные сети представляют собой системы, которые разделяют клиентов на группы, внутри которых уровень риска одинаков и максимально отличается от уровня риска других групп. Нейронные сети используются главным образом при определении кредитоспособности юридических лиц, где анализируются выборки меньшего размера, чем в потребительском кредите. Но наиболее успешной областью их применения стало выявление мошенничества с кредитными карточками благодаря их способности выявлять нестандартные ситуации (см.: Нортон М. Нервный бизнес//Банковские технологии. 1995. № 3. С. 73).
Генетический алгоритм основан на аналогии с биологическим процессом естественного отбора. В сфере кредитования это выглядит следующим образом: имеется набор классификационных моделей, которые подвергаются «мутации», «скрещиваются», и в результате отбирается «сильнейший», т. е. модель, дающая наиболее точную классификацию.
При использовании метода ближайших соседей выбирается единица измерения для определения расстояния между клиентами. Все клиенты в выборке получают определенное пространственное положение. Каждый новый клиент классифицируется исходя из того, каких клиентов — плохих или хороших — больше вокруг него.
На практике используется комбинация нескольких методов, и компании хранят свои скоринговые модели в строжайшем секрете, поэтому сложно сказать, какой метод лучше. Можно только делать приблизительные заключения, основываясь на научных публикациях, ниже приводится сравнительная таблица точности классификации для различных методов, составленная профессором Л. Томасом (Thomas L. C. A Survey of Credit and Behavioural Scoring//University of Edinburgh. 1999).
Сравнение следует производить только горизонтально, потому что авторы использовали разные определения «хороших» рисков и проводили исследования на различных популяциях и выборках. Таблица показывает процент правильно классифицированных клиентов. Цель всех приведенных исследований заключалась в сравнении эффективности различных методов классификации, поэтому не следует делать вывод, что данные цифры показывают эффективность скоринговых систем в целом, так как уже говорилось, что коммерческие системы используют несколько методов.
У каждого из методов имеются свои преимущества и недостатки, кроме того, выбор того или иного метода связан со стратегией банка и с тем, какие требования банк считает приоритетными при разработке моделей. Регрессионные методы показывают значимость каждой характеристики для определения уровня риска, и поэтому особенно важны на этапе разработки анкеты, которую заполняют клиенты. Линейное программирование может оперировать большим количеством переменных и моделировать определенные условия: например, если маркетинговая стратегия банка направлена на молодежь, можно ввести условие, чтобы интегральный показатель молодых людей был выше, чем тех, кому за 60. Нейронные сети и деревья классификации выявляют нелинейные связи между переменными, которые могут привести к ошибке в линейных моделях.
Точность классификации проверяется либо методом «скользящего экзамена» для небольших выборок (модель строится на всей выборке за исключением одного клиента, выбранного наугад, затем проверяется на этом клиенте, и так перебираются все клиенты), либо при достаточно большой выборке она подразделяется на две части: на одной модель строится, на другой — проверяется.
Ограничения, связанные с применением скоринга
В скоринге существует две основные проблемы. Первая заключается в том, что классификация выборки производится только на клиентах, которым дали кредит. Мы никогда не узнаем, как бы повели себя клиенты, которым в кредите было отказано: вполне возможно, что какая-то часть оказалась бы вполне приемлемыми заемщиками.
Но, как правило, отказ в кредите производится на основании достаточно серьезных причин. Банки фиксируют эти причины отказа и сохраняют информацию об «отказниках». Это позволяет им восстанавливать первоначальную популяцию клиентов, обращавшихся за кредитом.
Вторая проблема заключается в том, что люди с течением времени меняются, меняются и социально-экономические условия, влияющие на поведение людей. Поэтому скоринговые модели необходимо разрабатывать на выборке из наиболее «свежих» клиентов, периодически проверять качество работы системы и, когда качество ухудшается, разрабатывать новую модель. На Западе новая модель разрабатывается в среднем раз в полтора года, период между заменой модели может варьироваться в зависимости от того, насколько стабильной была экономика в это время. Для России, вероятно, максимальным периодом будет полгода, да и то при условии, что в этот период не произойдет никаких кардинальных потрясений типа событий августа 1998 г.
В настоящее время ведутся исследования того, как вводить социально-экономические характеристики в модель с тем, чтобы она служила дольше.
Перспективы развития скоринга в России
В России использование скоринг-систем тормозится, прежде всего, низкими объемами кредитования. Но с экономическим ростом (будем оптимистами) ситуация начнет меняться.
Само по себе небольшое по сравнению с западными кредитными организациями количество заемщиков препятствием не является, необходимо только следить за количеством характеристик по отношению к величине выборки. В статье В. Степанова, А. Заяца «Анализ состояния банка» (Банковские технологии. 1996. № 8. С. 58) авторы применили статистический подход — кластерный анализ — для классификации банков по группам рисков всего на 76 состояниях и при этом получили хороший результат — более 90% совпадений с оценкой эксперта.
Отсутствие кредитных бюро, безусловно, также не способствует развитию скоринга. Но, с другой стороны, на Западе существует проблема проверки достоверности информации, которую человек указывает о себе в анкете. В России большая часть такой информации содержится в паспорте. Банкам достаточно иметь паспортные данные и данные трудовой книжки — вот и исходный материал для анализа.
Еще один неблагоприятный фактор — недостаточная распространенность таких универсальных статистических пакетов, как SAS и SPSS. Но, обращаясь опять к статье В. Степанова и А. Заяца, отметим использование пакета Stat-Media. Кроме того, существуют и другие программы, доступные по цене, которые могут делать линейную многофакторную регрессию, а для начала этого вполне достаточно.
Вполне вероятно, что в России скоринг сначала будет применяться не для физических лиц, а для юридических просто потому, что у банков накоплено гораздо больше информации о предприятиях, при этом используются балльные системы оценки риска различной сложности и с различным уровнем автоматизации. Отличие балльной системы от скоринговой заключается в том, что в первой значимость того или иного коэффициента или финансового показателя определяется субъективно, а во второй производится привязка коэффициентов к уровню риска.
На Западе при кредитовании юридических лиц скоринг-модели распространены не настолько широко, как в потребительском кредите. Это связано с тем, что для разработки модели очень трудно набрать достаточное количество компаний, сходных друг с другом: компании сильно отличаются по размеру, обороту, секторам экономики. Чем крупнее предприятие, тем труднее подобрать аналогичные предприятия для сравнения.
В последние годы большие сдвиги произошли в разработке скоринг-моделей для малого бизнеса. Применение скоринга для малого и среднего бизнеса оказалось возможным именно в силу большого количества сходных между собой предприятий.
В заключение хотелось бы отметить, что в России внедрение скоринга тормозится не столько объективными, сколько субъективными причинами, связанными с недоверчивым отношением банковских менеджеров к математическим и статистическим методам. Не так уж много требуется, чтобы начать анализировать своих клиентов — кредитная история прошлых клиентов и статистический пакет, — а отдача будет колоссальной. Среди преимуществ скоринговых систем западные банкиры указывают, в первую очередь, снижение уровня невозврата кредита. Далее отмечается быстрота и беспристрастность в принятии решений, возможность эффективного управления кредитным портфелем, отсутствие необходимости длительного обучения персонала.
В России внедрение скоринга должно осуществляться постепенно. Для начала можно сделать автоматизированную систему предварительной оценки заемщиков, которая будет автоматически отсеивать заведомо «плохие» риски, а на рассмотрение кредитного комитета предлагать риски «хорошие» и «пограничные». Но даже не вводя автоматизацию, можно оценить связь отдельных характеристик клиента с вероятностью дефолта как для физических, так и для юридических лиц — знание таких характеристик может послужить существенной поддержкой кредитным инспекторам.
Итак, скоринг представляет собой автоматизированные системы оценки кредитного риска, которые широко используются в США и Западной Европе. В качестве исходного материала для скоринга используется разнообразная информация о прошлых клиентах, на основе которой с помощью различных статистических и нестатистических методов классификации делается прогноз о кредитоспособности будущих заемщиков. Скоринг-системы позволяют банковским работникам быстро принимать решения о кредитовании, регулировать объемы кредитования в зависимости от ситуации на рынке и определять оптимальное соотношение между доходностью кредитных операций и уровнем риска.
При подготовке статьи были использованы материалы Центра изучения кредита при Эдинбургском университете (Великобритания).
Источники:
Henley W.
E. Statistical aspects of credit scoring. Ph.D. thesis. Open
University. 1995.
Boyle M., Crook J. N.,
Hamilton R., Thomas L. C. Methods for credit
scoring applied to slow payers in Credit Scoring and Credit
Control//Oxford University Press. 1992.
Srinivasan V.,
Kim Y. H. Credit granting: a comparative analysis of
classification procedures//Journal of Finance. 1987. №
42.
Yobas M. B., Crook J. N., Ross P.
Credit scoring using neural and evolutionary techniques//Working
Paper 97/2, Credit research Centre, University of
Edinburgh.
Desai V. S., Convay D. G., Crook
J. N., Overstreet G. A. Credit scoring models in the
credit union environment using neural networks and genetic
algorithms//IMA J. Mathematics applied in business and industry.
8/1997.
ЧИТАЙТЕ ТАКЖЕ:
Классика сбережений - вклад в банке. Услуги на рынке валютных обменов FOREX. Дилинговые центры FOREX. Стратегии управления инвестиционным портфелем. Оптимальный выбор — фьючерсы. Отечественный рынок производных финансовых инструментов. Есть ли вечные ценности или имеет ли смысл инвестировать в золото, серебро, платину и платиноиды? Модели ипотечного кредитования и перспективы их применения. Зарубежная недвижимость. Домик у моря. Инфляция или укрепление рубля: какое из зол меньше? Золото как инструмент оптимизации инвестиционного портфеля.Ипотека. Сегодня это слово у всех на слуху. Однако далеко не все знают...
Патентная неизбежность для малого бизнеса
Первичный и вторичный рынки ценных бумаг
425 000 000 клиентов Facebook, которые не приносят доход
Инновационные программы должны быть подвергнуты "усушке"
Ипотека: монополия или конкуренция
Виды инвестиционных качеств ценных бумаг и методы их оценки
Лучше банка может быть только… брокер!
Что должен знать клиент, прежде чем заключить договор с банком
Информация, размещенная на сайте, получена из открытых источников, не претендует на полноту, актуальность и гарантированную достоверность, не предоставляется с целью оказания консультативных услуг и не является публичной офертой к осуществлению каких-либо инвестиций. Редакция проекта и авторы текстов не несут ответственности за возможные убытки, связанные с использованием содержащейся на страницах портала bankmib.ru информации. Финансовое инвестирование сопряжено с повышенным риском, в связи с чем инвесторам необходимо провести самостоятельный анализ ситуации и объектов инвестирования перед вложением средств.